Self-Esteem and Children's Reactions to Youth Sport Coaching Behaviors: A Field Study of Self-Enhancement Processes

Ronald E. Smith and Frank L. Smoll
University of Washington

Self-enhancement models posit a general motive to enhance self-regard that is believed to be particularly strong in people with low self-esteem. We extended previous laboratory research with college students to a field setting and studied the attraction responses of child athletes to coaches who differed in their observed behavior patterns during the sport season. Consistent with predictions derived from self-enhancement theory, children who were low in self-esteem responded most positively to coaches who were reinforcing and encouraging and most negatively to coaches who were low on this supportiveness dimension. A similar pattern was found in children's responses to technical instruction, which we regarded as instrumental to competency development and esteem enhancement. Attraction responses of moderate- and high-self-esteem children were relatively unaffected by these variations in adult leader behaviors.

The manner in which personality affects responses to other people has long been a topic of interest in psychology. Of the personality variables that have been studied in this regard, global self-esteem (one's general feelings of self-worth) has received the greatest amount of both theoretical and empirical attention (Swann, 1985; Wylie, 1979). Much of the research concerned with the influence of self-esteem on reactions to others has been inspired by self-enhancement theory (Shrauger, 1975; Swann, Griffin, Predmore, & Gaines, 1987; Tesser, 1988), which asserts that people are motivated by a general desire to achieve and maintain positive self-regard. Self-enhancement needs are thought to be especially strong in those with low self-esteem because such people have chronically low self-regard to begin with and are most in need of positive self-relevant experiences. A related notion is that people who are low in self-esteem may feel more threatened when their self-evaluation is at stake, because the subjective likelihood of receiving negative as opposed to positive feedback is higher for them. Consistent with this view is evidence that people who are low in self-esteem are more responsive to differences in evaluative feedback than are people who are high in self-esteem (Brown, Collins, & Schmidt, 1988; Dittes, 1959; Tesser & Campbell, 1983).

Much of the research inspired by the self-enhancement model has been concerned with the effects of positive and negative interpersonal feedback on the subsequent evaluative responses of people who vary in self-esteem. The results of such studies, although not totally consistent, have tended to favor the enhancement model, particularly when the evaluative responses have an affective component, such as degree of liking for the person who gave the positive or negative feedback (Shrauger, 1975; Swann et al., 1987; Wylie, 1979).

In some studies, self-esteem was varied by means of an experimental manipulation. For example, Jacobs, Berscheid, and Walster (1971) gave male college students either positive or negative bogus feedback concerning evaluations of their personality. A manipulation check indicated that self-regard was affected by the feedback. The subjects were subsequently exposed to either a clearly accepting, an ambiguously accepting, or a clearly rejecting evaluation from a female college student. Whether subjects were high or low in initially manipulated self-regard, they evaluated the woman more positively if she had clearly accepted them than if she had clearly rejected them. Moreover, the difference in evaluations of the accepting versus the rejecting woman was especially large for those subjects whose self-esteem had been manipulated downward, a result that is clearly supportive of the enhancement model. Skolnick (1971) reported similar results, indicating an apparent increase in self-enhancement needs in response to conditions of experimentally lowered self-regard. However, neither study took into account subjects' preexisting levels of self-esteem.

The clearest tests of the enhancement model are when self-esteem is defined not by experimental manipulation but on the basis of scores on self-esteem trait scales that presumably measure chronic self-regard. Dittes (1959) selected subjects who were low, moderate, and high on a global self-esteem scale and gave them feedback that their acceptance by a group was either well below average, average, or far above average. Consistent with the notion that low-self-esteem subjects have especially strong self-enhancement needs that negate consistency influences, Dittes found that although all self-esteem groups preferred the accepting group, the difference in attraction responses toward accepting and rejecting others was especially large for the low-self-esteem subjects.

This research was supported by Grant 86-1066-86 from the William T. Grant Foundation and Grant MH-24248 from the National Institute of Mental Health. We wish to acknowledge the contributions of David Coppel, Bill Curtis, Earl Hunt, and Nolan Zane in the collection and analysis of the data, as well as the many undergraduate research assistants who served as trained observers and interviewers. We also wish to thank three anonymous reviewers for their comments and suggestions.

Correspondence concerning this article should be addressed to Ronald E. Smith, Department of Psychology NI-25, University of Washington, Seattle, Washington 98195.
Evaluative feedback from others is a powerful determinant of self-esteem, but it is not the only factor. As James (1890) noted a century ago, self-perceived competencies in areas that are valued by the person provide an important basis for self-esteem. Supporting this notion is empirical evidence that competency increases in children are predictive of increases in self-esteem (Calsyn & Kenny, 1977; Harter, 1985). Therefore, we might expect, on self-enhancement grounds, that low-self-esteem people would be especially attracted not only to those who respond to them in a supportive fashion but also to those who try to help them become more competent. As noted earlier, increased competencies not only enhance self-evaluations but also permit more direct routes to self-enhancement, such as through athletic accomplishments. The effects of competency-enhancing informational and instructional behaviors on the attraction responses of individuals who differ in self-esteem have not previously been addressed.

Although many studies have been done to test the influence of self-esteem on self-enhancement tendencies, most of them were performed under laboratory conditions involving single interactions between people who were probably not very important to one another and who, in many instances, had never met face to face. Studies that focus on long-term interactions with others whose reactions are important to the individual are badly needed. Moreover, most of the research has involved college samples, and we know relatively little about self-enhancement processes in children. There are indications, however, that low self-esteem may fuel self-enhancement tendencies in children as well. For example, Covington and Beery (1977) found that school children who had low self-esteem adopted strategies such as avoiding participation when they anticipated failure, setting unrealistic goals, and not trying hard on difficult tasks. Covington and Beery concluded that the children seemed highly motivated to avoid failure and to preserve what little sense of self-worth they possessed.

As Cialdini (1980), McGrath (1982), and others have argued, it is important that personality-social and developmental research occur in both laboratory and field settings, with differing populations and alternative methodological approaches that maximize control, on the one hand, and ecological validity, on the other. It thus seems important to extend this line of self-esteem research into the natural environment and to a child population to complement the growing body of laboratory findings concerning self-enhancement and consistency influences in attraction. The youth sport setting is one that offers some significant advantages for approaching this theoretical issue. Here, young athletes interact within a restricted setting and over an extended period of time with an adult coach who is often an important figure in their lives (Smoll & Smith, 1989). Indeed, one large sample of child athletes rated positive evaluations from their coach as more important incentives for performance than similar evaluations from their parents (Smith, Smoll, & Smith, 1989). Moreover, coaches engage in both supportive and instructional behaviors in their leadership role, and the setting is both an interpersonal and a competency-development one. Finally, these coach-athlete interactions occur during a developmental period when self-confirmation and social evaluation are thought to be particularly important to the child's sense of self (Rosenberg, 1979; Scanlan, 1988). In the present study, we assessed the relation between young athletes' general self-esteem and their liking for coaches who differed in supportiveness and in their tendency to try to help children develop baseball competencies through instruction.

Method

Subjects and Procedure

The subjects were 51 male head coaches and 542 male athletes in a Little League Baseball program in a Seattle area. With their written consent, coaches in three separate leagues were observed and their behaviors coded during at least three games spaced over the entire season (M = 4.75 games). The 542 players (mean age = 11.12 years, SD = 2.27 years) were individually interviewed and administered questionnaires within 2 weeks of the end of the season. This sample represented 83% of the youngsters who played for the 51 coaches.

Measures

Coaching Behavior Assessment System. The Coaching Behavior Assessment System (CBAS; Smith, Smoll, & Hunt, 1977a) was developed to permit the direct observation and coding of coaches' behavior during practices and games. The behavioral categories were derived from content analyses of numerous verbal "play-by-play" reports of coaches' actions during practices and games, using a time-sampling procedure. Both the measurement approach and some of the categories derive from a social-behavioral orientation, and the categories incorporate behaviors that have been shown to affect both children and adults in a variety of nonathletic settings (Bales & Slater, 1955; Komaki, 1986; White, 1975).

The CBAS contains 12 categories divided into two major classes of behaviors. **Reactive** behaviors are responses to immediately preceding athlete or team behaviors, whereas **spontaneous** behaviors are initiated by the coach and are not a response to a discernible preceding event. Reactive behaviors are responses to either desirable performances, mistakes, or misbehaviors on the part of athletes, whereas the spontaneous class is subdivided into game-related and game-irrelevant behaviors initiated by the coach. The system thus involves basic interactions between the situation and the coach's behavior, and the specificity of these interactions contributes to high interrater reliability. The reactive categories are listed below.

Responses to desirable performance/effort:

1. **Reinforcement (R)**—a positive verbal or nonverbal reaction to a desirable performance by one or more players. Examples include praising one or more players or patting one on the back.

2. **Nonreinforcement (NR)**—a failure to acknowledge or reinforce a desirable behavior or effort that the coach has clearly observed.

Reactions to mistakes:

3. **Mistake-contingent encouragement (EM)**—encouragement of a player or the giving of reassurance after a mistake is made (e.g., "That's OK, Tommy, you'll get it next time").

4. **Mistake-contingent technical instruction (TIM)**—telling or showing an athlete who has made a mistake how to execute the behavioral correction. It requires specific instruction.

5. **Punishment (P)**—a negative verbal or nonverbal response by the coach following inadequate performance. Examples include criticizing a player who has made a mistake or waving one's arm in disgust following an error.

6. **Punitive technical instruction (PTIM)**—the giving of TIM in a punitive and hostile manner, as when a coach shouts, "How often do I have to tell you to use two hands, Stupid!"

7. **Ignoring mistakes (IM)**—a lack of response to a mistake or error.
SELF-ESTEEM AND SELF-ENHANCEMENT

This is scored when the coach has clearly seen the mistake and does not respond with one of the other mistake-contingent responses.

Responses to misbehaviors:

8. Keeping control (KC)—coaches' responses that are oriented toward suppressing misbehavior and maintaining order. These usually occur in response to misbehavior or inattentiveness on the part of one or more athletes.

In addition to the eight reactive categories, the CBAS contains four spontaneous behaviors:

9. General technical instruction (TIG)—communications that provide instruction relevant to techniques and strategies of the sport. This category is coach-initiated, not a response to an immediately preceding mistake. Baseball examples include telling or showing a player how to bat, telling a fielder which base to throw to, or strategically shifting the outfield.

10. General encouragement (EG)—encouragement that is future-oriented rather than a response to a mistake. Examples include encouraging a player to get a hit or the team to keep playing hard.

11. Organization (O)—behavior directed at administrative organization, such as reminding players of the batting order, making substitutions, assigning base coaches, or assigning responsibility for putting equipment away.

12. General communication (GC)—interactions with players that are unrelated to game situations or team activities. Examples include conversations about school or family matters, joking with players, discussing events unrelated to sports, and so forth.

Coding and training procedures. In using the CBAS, observers stationed themselves at a point (typically in the stands behind the team's bench) from which they could observe the coach in an unobtrusive manner. To minimize possible reactivity effects, coaches were observed for one game prior to the collection of research data.

Observations were recorded by writing the appropriate behavioral codes (e.g., R for Reinforcement or O for Organization) as the behaviors occurred. Every codable behavior that the coach exhibited during the game was recorded (typically 175–250 behaviors). For each game, the frequency of behaviors in each category was divided by the total number of behaviors coded for that game, yielding a percentage score for each of the 12 categories. These percentages were then averaged across games to obtain the mean percentage scores that served as the coach behavior measure in the analyses described below.

A training program was developed to achieve high interrater reliability among observers using the CBAS. The program, which involved 3 weeks of training, included (a) study of a training manual containing an explanation of the CBAS, instructions for its use, and a programmed learning component (Smith, Smoll, & Hunt, 1977b); (b) group instruction in use of the scoring system, including viewing and discussion of a videotaped training module that provided instruction in the categories and examples of the behaviors; (c) written tests in which trainees were required to define the CBAS categories and score behavioral examples; (d) the scoring of videotaped sequences of coaching behaviors; and (e) a reliability check in the field in which the accuracy of behavior codings was established in relation to concurrent scoring by one of the authors. We required 100% accuracy in the scoring of written and videotaped behaviors and at least 80% agreement for all categories in the field assessment before an observer was permitted to collect research data.

Thirty-one undergraduate students were trained to collect behavioral data. These observers attained a mean interrater reliability coefficient of .88 (range = .81 to .95) in their field codings on the basis of the transcategorical correlational technique recommended by Berk (1979) as most appropriate for assessing interrater reliability with a continuous behavioral as opposed to a time-sampling coding system.

Athlete attitudes. Player variables were assessed in a structured interview and questionnaire session conducted in the children's homes by trained interviewers at the conclusion of the season. None of the 29 interviewers had done behavioral observations of the coaches. Children were assured that their data were confidential and that coaches would never be told how their players responded to the questions. The children recorded their own responses on 7-point scales in such a way that the interviewer could not view them. Only the child's age and the name of his team were included on the forms to maintain anonymity of responses. To assess reactions to participation, the following questions were asked:

1. How much do you like baseball?
2. How much did you like playing for your coach?
3. How much would you like to have the same coach again next year?
4. How much do you like your coach?
5. How much do your parents like your coach?
6. How much does your coach like you?
7. Do you like baseball more or less than you did at the beginning of the season?
8. How much does your coach know about baseball?
9. How well did the players on your team get along?
10. How much did you like the other players on your team?

Self-esteem. A 14-item measure of general self-esteem was derived from the General Self subscale of Coopersmith's (1967) Self-Esteem Inventory. Sample items include "I feel pretty sure of myself" and "I wish I could change a lot of things about myself." The children rated themselves on each item using a 5-point scale ranging from very much like me to not at all like me. Six of the items were keyed in the negative direction, eight in the positive direction. The revised General Self-Esteem Scale has adequate internal consistency (Cronbach alpha = .86) and test-retest reliability (.65 over 12 months) in this age group. Scores on the scale could range from 14 to 70. The present sample of children obtained a mean score of 50.66 (SD = 6.91).

Results

During 202 complete games, observers coded a total of 57,213 behaviors, an average of 1,122 per coach. Table 1 presents the distribution of percentage scores within the 12 CBAS categories. To determine the dimensions along which the CBAS categories were patterned, a principal-components analysis was performed and the factors were rotated to a varimax solution to yield uncorrelated factors. The orthogonal factor structure is also presented in Table 1. Loadings on the behaviors that defined the factors all exceeded .55.

Four behavioral factors having eigenvalues exceeding 1.00 emerged, accounting for 69% of the response variance. The first rotated factor reflects the tendency of a coach to be unresponsive both to positive plays and to mistakes, because Nonreinforcement and Ignoring Mistakes both load highly on this factor; it appears to be a general responsiveness measure. Factor 2 indicates the degree to which the coach is punitive and gives General Encouragement versus the extent to which he organizes and engages in disciplinary behaviors (Keeping Control). Factor 3 reflects an instructional orientation versus one involving General Encouragement and General Communication. Factor 4 is a supportive pattern involving the tendency to respond to positive performance or effort with Reinforcement and to mistakes with encouragement rather than punitive or instructional responses. The four rotated factors accounted for 12.5%, 21.5%, 15.7%, and 19.4% of the behavioral variance, respectively.
Table 1
CBAS Percentage Scores and Rotated Factor Loadings

<table>
<thead>
<tr>
<th>Behavior category</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement</td>
<td>17.1</td>
<td>6.1</td>
<td>-.18</td>
<td>-.14</td>
<td>-.07</td>
<td>.88</td>
</tr>
<tr>
<td>Nonreinforcement</td>
<td>4.2</td>
<td>3.5</td>
<td>.86</td>
<td>-.02</td>
<td>.05</td>
<td>-.13</td>
</tr>
<tr>
<td>Mistake-contingent</td>
<td>3.1</td>
<td>1.7</td>
<td>-.08</td>
<td>.00</td>
<td>-.10</td>
<td>.72</td>
</tr>
<tr>
<td>encouragement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mistake-contingent</td>
<td>4.2</td>
<td>2.0</td>
<td>.03</td>
<td>.14</td>
<td>.64</td>
<td>-.20</td>
</tr>
<tr>
<td>technical instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punishment</td>
<td>1.8</td>
<td>1.8</td>
<td>.10</td>
<td>.74</td>
<td>.18</td>
<td>-.24</td>
</tr>
<tr>
<td>Punitive technical</td>
<td>1.0</td>
<td>1.1</td>
<td>-.07</td>
<td>.62</td>
<td>.26</td>
<td>-.41</td>
</tr>
<tr>
<td>instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignoring mistakes</td>
<td>3.7</td>
<td>2.6</td>
<td>.85</td>
<td>.04</td>
<td>-.06</td>
<td>-.10</td>
</tr>
<tr>
<td>Keeping control</td>
<td>1.7</td>
<td>1.7</td>
<td>-.26</td>
<td>-.59</td>
<td>-.10</td>
<td>-.37</td>
</tr>
<tr>
<td>General technical</td>
<td>27.4</td>
<td>8.1</td>
<td>-.29</td>
<td>-.13</td>
<td>.73</td>
<td>-.38</td>
</tr>
<tr>
<td>instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General encouragement</td>
<td>21.4</td>
<td>7.1</td>
<td>-.29</td>
<td>.58</td>
<td>-.59</td>
<td>-.15</td>
</tr>
<tr>
<td>Organization</td>
<td>8.4</td>
<td>3.9</td>
<td>.24</td>
<td>-.77</td>
<td>.20</td>
<td>-.03</td>
</tr>
<tr>
<td>General communication</td>
<td>6.1</td>
<td>4.6</td>
<td>-.01</td>
<td>-.14</td>
<td>-.76</td>
<td>-.40</td>
</tr>
</tbody>
</table>

Note. N = 51 coaches. Number of coded behaviors = 57,213.

The factor structure indicates that Puniteness and Supportiveness are independent dimensions of leader behavior in this setting rather than opposite ends of the same dimension. Moreover, Factor 3 and Factor 4 resemble the task-oriented and relationship-oriented dimensions of leader behavior that have frequently been the focus of attention in leadership research (e.g., Fiedler, 1967; Stogdill, 1959). Most significantly for the purposes of the present study, the two classes of behavior of primary interest, supportive and instructional responses, loaded on distinct and independent factors.

The children's attitude measures were also subjected to a principal-components analysis. Two factors emerged, accounting for 62% of the variance. The first factor, accounting for 51% of the variance, included Items 2, 3, and 4, relating to liking for the coach, as well as the item evaluating the coach's knowledge of baseball. All item loadings exceeded .60. Factor scores on this dimension served as the measure of attraction. The second factor included items relating to liking for the sport, perceived team solidarity, and liking for teammates.1

Factor scores on the four behavioral dimensions were generated for each of the 51 coaches and, along with self-esteem scores, served as predictors of attraction responses in a multiple-regression model. The use of orthogonal factor scores minimized multicollinearity among measures involved in the analysis. The intercorrelations among the self-esteem and coaching-behavior predictor variables were all less than .10. In the regression analysis, the child's self-esteem score was entered first, followed by his coach's four factor scores.2 Entered next were product scores formed by the child's self-esteem score and his coach's factor scores on each dimension, to assess interactions between self-esteem and coaching behaviors. Because the major focus of this study involved the interaction of self-esteem with the supportiveness and instructional variables, these factor scores were added last to the regression equation. This permitted an assessment of their independent predictive contribution after variance accounted for by self-esteem, the other behavior factors, and their interactions had been removed (and, in the case of Supportiveness, after variance accounted for by Instructiveness had been partialed out).

The results of the regression analysis are presented in Table 2. The F values test the significance of the increment in total variance accounted for by each variable as it was entered into the equation (Cohen & Cohen, 1983, p. 146). Self-esteem was itself unrelated to attraction toward the coaches. On the other hand, with variance accounted for by self-esteem and the other behavior factors removed, significant main effects were found for both the Instructiveness and Supportiveness dimensions. In each case, children were more attracted to coaches who were high on these dimensions. Of primary interest, however, were the predictive relations between attraction and the self-esteem × behavior product scores. Self-esteem did not interact with general reactivity or with the punitive factor to influence attraction. However, significant effects were found for the product scores involving Instructiveness and Supportiveness. The negative regression coefficients indicated that attitudes of children low in self-esteem were most strongly related to variations on these coaching behavior dimensions. To provide a graphic representation of the nature of the interactions, we divided the sample into thirds to form high-, moderate-, and low-self-esteem groups and plotted mean attraction responses to coaches who fell 1 SD above or below the means of the factor score distributions (ns = 9 high and 8 low coaches for Supportiveness; ns = 9 coaches at each level for Instructiveness). The six means shown in each graph of Figure 1 are based on the responses of 26-37 children and on 30 of the coaches (of whom 5 scored in the extremes of both the uncorrelated Supportiveness and Instructiveness distributions). As the regression results indicate, the greatest differences in attraction scores toward coaches who differed in supportiveness and in instructiveness occurred for children who were low in self-esteem. Indeed, the significant main effects for supportiveness and instructiveness are mainly attributable to the differential reactions by the low-self-esteem children.3

1 Although we used factor scores in our analyses to optimally combine the items that made up the two factors, we also combined the sets of items, using unit scores to assess internal consistency. The Cronbach's alphas for the coach-evaluation and liking-for-sport/teammates item sets were .87 and .81, respectively.

2 In this analysis, the child's individual attraction score is the dependent (criterion) variable, and the individual coaches' factor scores on each behavior variable appear as a predictor variable in the record of each athlete who played on the coach's team, much as a qualitative dummy variable based on an experimental or natural condition might. See Cohen and Cohen (1983, pp. 190-204) for a mathematical justification for this procedure.

3 Although the hypothesis tested in this study related to children's reactions to the coach, we also performed an identical regression analysis using factor scores from the second attitude factor (i.e., liking for the sport and for teammates). We found highly significant main effects for coach supportiveness and instructiveness on this factor that paralleled the findings on the coach attraction measure. However, self-esteem did not interact with the coaching behaviors as it did in the case of attitudes toward the coach. Thus, the interactive effects of self-esteem and coaching behaviors were restricted to liking for the coach and did not generalize to sport and teammates.
Children’s Attraction Responses

Table 2

Regression Analysis of Predictors of Children’s Attraction Responses

<table>
<thead>
<tr>
<th>Variable</th>
<th>R</th>
<th>R²</th>
<th>Beta</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-esteem (SE)</td>
<td>.04</td>
<td>.001</td>
<td>-.001</td>
<td>0.75</td>
</tr>
<tr>
<td>Activity factor</td>
<td>.06</td>
<td>.003</td>
<td>-.572</td>
<td>3.40</td>
</tr>
<tr>
<td>Punitiveness factor</td>
<td>.08</td>
<td>.006</td>
<td>1.44</td>
<td>0.19</td>
</tr>
<tr>
<td>Instructiveness factor</td>
<td>.15</td>
<td>.023</td>
<td>.975</td>
<td>10.04**</td>
</tr>
<tr>
<td>Supportiveness factor</td>
<td>.20</td>
<td>.040</td>
<td>.904</td>
<td>7.15**</td>
</tr>
<tr>
<td>SE × Activity</td>
<td>.22</td>
<td>.048</td>
<td>.497</td>
<td>2.57</td>
</tr>
<tr>
<td>SE × Punitiveness</td>
<td>.22</td>
<td>.048</td>
<td>-.170</td>
<td>0.26</td>
</tr>
<tr>
<td>SE × Instructiveness</td>
<td>.26</td>
<td>.067</td>
<td>-.801</td>
<td>8.82**</td>
</tr>
<tr>
<td>SE × Supportiveness</td>
<td>.29</td>
<td>.082</td>
<td>-.773</td>
<td>6.79</td>
</tr>
</tbody>
</table>

* p < .025, ** p < .01.

Discussion

The results of this study are consistent with hypotheses derived from the self-enhancement model. Because people low in self-esteem are assumed to have particularly strong needs for enhancement, they are expected to be maximally responsive to variations in the valence of interpersonal feedback. The enhancement model thus predicts that people low in self-regard will be strongly attracted to those who satisfy their need by providing them with support and positive evaluations. The attraction responses made by children who had played for coaches who were high and low on a supportiveness dimension involving positive reinforcement and mistake-contingent encouragement conformed closely to predictions derived from the self-enhancement model. Low-self-esteem children responded most positively to highly supportive coaches and most negatively to those who were low in supportive behaviors. Indeed, our results paralleled almost exactly those obtained by Dittes (1959) in a laboratory experiment with college students (see his Figure 2, p. 79), indicating an impressive stability of this self-enhancement pattern across different settings and age groups. As was the case in Dittes’s study, moderate- and high-self-esteem subjects were far less affected by variations in supportiveness. Dittes (1959) and Wylie (1979) interpreted this finding as indicating that people who have adequate or high levels of self-esteem have less urgent needs for support, so that attraction responses are less strongly linked to variations in esteem-enhancing behaviors on the part of others. Another possibility is that high-self-esteem individuals tend to evoke positive reactions from a wide range of people in their environment (or at least from those who are especially important to them) and that these individuals are therefore less affected by the reactions of any one person. Finally, Brown et al. (1988) maintained that high-self-esteem people are more likely to satisfy their self-enhancement needs with self-directed behaviors and to be therefore less dependent on indirect indications of worth such as those that might occur through supportive communications. Although all three of these explanations are in need of additional empirical attention, any or all of them could account for Dittes’s (1959) and our results.

A similar pattern was found in the relation between self-esteem and responses to coaches who differed in their tendency to engage in instruction. We suggested on the basis of the self-enhancement model that low-self-esteem children would value behaviors that were intended to help them become more competent and would therefore be especially attracted to those coaches who were highly instructive. Thus, our results appear to be consistent with a self-enhancement interpretation that focuses on enhancement through competency development. Overall, then, our findings indicate that children low in self-esteem are especially responsive to both supportive and instructional orientations in adult leaders.

Several methodological limitations of this study deserve comment. First, our coding system was restricted to the coaches’ behaviors and the situations in which they occurred. Thus, we have no means of identifying the specific players at whom the behaviors were directed. We cannot rule out the possibility that low-self-esteem children received greater amounts of supportive and instructional behaviors and that this factor accounts for at least some of their differential responsiveness to coaches who varied on these dimensions. Additionally, the CBAS is a broad-band coding system that does not presently make distinctions between other potentially important aspects of coaching behaviors, such as verbal and nonverbal responses, magnitude of reinforcement, quality and duration of instruction, and so forth. Finally, many of the coded behaviors were responses to groups of players or to the team as a whole. Our codings indicated that the average coach engaged in more than 140 codable responses per hour. Given that the children interacted with the coach for more than 100 h during practices and games over the course of the season, the young athletes were exposed to many thousands of behaviors, some of which were directed at them, some at others, and some at the group. Thus, our behavioral data are most properly interpreted as assessing differences in the type of general social environment produced during...
by the coaches' behaviors. Studies with finer-grained analyses of the specific interaction patterns created by coaching behaviors are clearly needed.

The question of whether attraction responses require that a person actually be the recipient of desired behaviors is also unanswered at this point. If we assume that the behaviors of the coach create an environment in which the potential for receiving certain behaviors varies, it is possible that children are differentially attracted to coaches who are more likely to provide them with desired responses. This would account for the fact that low-self-esteem children indicated a strong desire to play for supportive and instructive coaches in the future and not to play for coaches low on these dimensions.

The failure of the Punitive dimension either to exert a main effect on attraction responses or to interact with the child's level of self-esteem would appear inconsistent with the self-enhancement model. Rosenbaum and deCharms (1962) found that subjects low in self-esteem responded more negatively to those who derogated them than did high-self-esteem subjects, suggesting that low-self-esteem individuals may feel more threatened by negative feedback. In the present case, however, the punitive response categories loaded on the same dimension as general encouragement, which occurred far more frequently and may have negated the impact of punitive responses. That is, the coaches who were most punitive also tended to give a great deal of general (as opposed to mistake-contingent) encouragement. In a study of the valence of the CBAS behaviors, Coppel (1979) asked young athletes how much they liked or disliked their coach's engaging in the various behaviors. The punitive coaches who were most punitive also tended to give a great deal of general encouragement, which occurred far more frequently and may have negated the impact of punitive responses. That is, the coaches who were most punitive also tended to give a great deal of general (as opposed to mistake-contingent) encouragement. In a study of the valence of the CBAS behaviors, Coppel (1979) asked young athletes how much they liked or disliked their coach's engaging in the various behaviors. The punitive categories were rated very negatively and general encouragement very positively. Thus, the presence of the latter behavior on the Punitiveness factor may be responsible for the null result.

A final limitation of this study is that it involved only male coaches and only male children. Although two of the three Little League Baseball leagues we studied had a softball program for girls, there were too few teams to permit a meaningful companion study. Such a study is surely desirable, however. The number of girls involved in organized sports has increased markedly in the past decade (Martens, 1988), and research is needed to assess the effects of sport participation on both boys and girls. Although gender differences have not been evident in the experimental literature involving college-age samples (perhaps because gender differences have seldom been examined), it is important to study the development of self-enhancement tendencies and their relation to personality variables like self-esteem in children of both genders. We predict that the same general pattern of results that we obtained for Supportiveness would also be found in a female sample but that this measure might account for more variance in attraction toward the coach than it did in our male sample. We base this hypothesis on the results of the study by Coppel (1979), who found valence ratings of CBAS behaviors from both boys and girls. Coppel found significant gender differences in the behaviors that defined our Supportiveness factor. Girls indicated a significantly greater liking for these behaviors (although both genders valued them highly). Thus, we might expect girls (particularly those low in self-esteem) to be especially responsive to variations in coaching behaviors along the Supportiveness dimension. On the other hand, Coppel found that boys valued instructive behaviors more than did girls, suggesting the possibility that boys might be more responsive than girls to coach differences on this dimension. These hypotheses are certainly amenable to empirical testing in the sport environment, and they also invite attention in other settings where children interact with adults, such as school and family settings. Given the seemingly ubiquitous nature of self-enhancement processes, the developmental roots and course of these phenomena clearly deserve empirical attention.

References

Received June 8, 1989
Revision received December 1, 1989
Accepted December 2, 1989